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Abstract 

Earlier work by the present author on a two fluid quantum simulating system is elaborated 
and clarified. Both of the fluids involved are assumed to have positive and negative mass 
in their structure. The thermodynamical and statistical consequences of using such a 
mixed mass system are analysed. Connections with the work of other authors are 
established. In particular, bulk viscosity is now incorporated as a vital characteristic of 
one of the fluids. 

1. Introduction 

This paper is concerned with the elaboration, extension and clarification 
of earlier work (Gilson, 1969a, b, c, 1971a) by the present author and the 
employment of  an idea contained in the work (HSrnqvist, 1969). We shall, 
to a large extent, be concerned with showing how a two-fluid reformulation 
of SchrSdinger quantum mechanics on to a 'classical' statistical fluid basis 
can be linked unambiguously to standard thermodynamical and fluid 
concepts. 

I f  one accepts the need to advance beyond the now orthodox quantum 
mechanical concepts characterised by SchrSdinger theory and such 
imponderables as wave functions (which have little, if any, physical 
pictorial quality as against their obvious and great mathematical utility); 
then, as has been suggested by Bohm (1957), it seems that we must work 
with classical like fluids with 'extra '  degrees of  freedom. The present author 
(Gilson, 1969c) has shown that use can be made of negative mass in 
resolving the problems which arise in this context. Thus, in the present 
work, we shall assume that quantum phenomena are basically due to the 
interaction of two distinguishable fluids. We shall call these two fluids the 
solute and the solvent. Considerable evidence for the validity of  this 
decomposition has been given by the present author in earlier work. 
Further, it seems inevitable that both of  these fluids will have positive and 
negative mass involved in their structures. This inevitability will be dis- 
cussed further in a later section. The first problem which arises when 
working with mixed mass distributions, in thermal velocity space, concerns 
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averages. How should averages be defined when negative mass regions 
occur in thermal velocity space ? The answer to this question is given in the 
next section. 

2. Averages with Negative Mass  

Let us for the moment consider the solute part of the fluid complex. As 
elsewhere (Gilson, 1969b), this fluid will be denoted by the subscript '1' and 
itself is to be regarded as decomposable into positive and negative mass 
constituents. We shall have in the scheme a basic 'molecular' mass. This 
will be the rest mass of an electron and will be denoted by me. The positive 
mass constituent particles of the solute will be assumed to have rest mass 

m l + = m e  (2.1) 

and the negative mass constituent particles of the solute will be assumed to 
have rest mass 

ml_ = -me (2.2) 

The concentrations (molecules per cc) of these two constituents of the solute 
will be denoted by n,+ and nl_. Thus the positive and negative mass 
densities will be 

pl+ = n,+ml+ and pl-  = hi_m1_ (2.3) 

The total mass density for the solute will be 

p, = n,+ml+ + n , _ m , _  (2.4) 

We shall be particularly concerned with how the mass distribution in 
configuration space given by (2.4) is built up from a 'thermal velocity space' 
mass density distribution. The thermal velocities [or peculiar velocities 
(Chapman, 1960)] for the solute will be denoted by 

l,+(r, t) = v,_.(r, t) - <v,(r, t)> (2.5) 

where <v,(r, t))  is the mass-weighted mean solute velocity at position r and 
time t. In fluid systems, it is usual to define two mean velocities, Ca and 
(Vl), by equations such as 

(n,+ + n,_) ~A = n,+~,+ + n,_rr (2.6) 

and 
(p,+ + p,_)<v,> = p,+~,+ + p,_~,_ (2.7) 

Equation (2.6) gives the number average and (2.7) gives the mass average. 
In Chapman and Cowling's book, the subscript '0' is used to denote the 
mass average. It is the mass weighted average which plays the important 
part in this work. When negative contributions do occur in such a weighted 
average, they will clearly have a most significant effect on the characteristics 
of the system and involve possibilities which could not otherwise occur. 
From (2.3) and (2.7), we have 

me(n,+ - n,_) <v,> = m e ( n l + V , +  - n l _ v l _  ) (2.8) 
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where 

We now assume that 

and 

(vl)  = N'fl(nl+~q+ - nl_~q_) (2.9) 

Nl =h i+  --nl_. (2.10) 

n,+ = f A  +(1,+, r, t)dll+ (2.11) 

t" 
nl_ = j Z_(II_, r, t) dll_ (2.12) 

where f l+ and f l_  are the thermal velocity space distribution densities and 
rill+ are elements of volume in thermal velocity space. Thus (2.9) becomes 

(u = N71 f (f~+ -f~_)va dl~ (2.13) 

This is the type of average we shall use. It is convenient to define an 
unnormalised mass density in velocity space, ml(ll), by 

rh,(l,) = (f1+ - A - )  me (2.14) 

and a related normalised mass density by 

ml(/1) = Ni-l(f1+ - Z - ) m e  (2.15) 

We see from (2.10), (2.11) and (2.12) that 

f ml(l l)dll  = me (2.16) 

Thus the normalisation of the solute mass density is to the value of one 
electron mass. Generally, we can define a solute mass weighted average for 
functions of Ii as 

me(F)  j = f ml(ll) F(I1) dll (2.17) 

Let us now turn our attention to the solvent. Almost identical con- 
siderations apply, in forming a mixed mass distribution for this fluid, as 
were applicable for the solute. However, there are some differences. For one 
thing, we shall define the normalisation number in this case by 

N2 = n2_ - n2+ (2.18) 

This number is greater than zero provided that n2_ is the dominant 
concentration. We shall, in fact, make m2(12) a dominantly negative mass 
distribution. Thus the unnormalised distribution 

ff/2(12) = (f2+ --f2-) me (2.19) 

and the normalised distribution 

m2(12) = N~ a m2(12) (2.20) 
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will have the same sign. They will, in fact, both be negative if f2_ is greater 
than f2+. From (2.20), it follows that 

f m2(12) = -me d12 (2.21) 

Thus the solvent mass distribution, m2(12), is normalised to minus the mass 
of one electron. The reader should be warned that the notation here is not 
the same as that used in (Gilson 1969b, c, 1971a) because we are now taking 
the physical solvent mass density to be dominantly negative. That is to say, 
our old solvent mass density multiplied by minus unity is now our new 
solvent mass density. This has the effect that there is a change of sign for all 
solvent averages. The final results and conclusions are not altered, however, 
because now we shall add solute and solvent energy densities whereas before 
we subtracted solvent energy density from solute energy density. Our 
present definitions and notations are nearer to the physical meaning of the 
terms and so are preferable to our earlier forms. Generally, we shall have 

me(F)2 = f m2(12) F(12) d12 (2.22) 

The normalisations (2.16) and (2.21) are easily converted to plus or minus 
unity respectively by dividing the normalised distributions (2.15) and (2.19) 
by the electron rest mass, me. The actual form to be taken by distributions 
such as ml01) and m2(12) in order that they will generate quantum mechanics 
is known from the work (Gilson, 1971a, equations 4.1 and 4.4). They are 
closely related to Maxwell distribution but because of their local character 
and divergence problems they are mathematically quite difficult to handle. 
However, we shall not need to know their actual form of dependence on T 
and I for the work in this paper. The temperature of the solute can now be 
defined by 

{kT1 = �89 112> (2.23) 

and the temperature of the solvent by 

~kT2 = �89 122) (2.24) 

We shall now briefly consider why the four-fold decomposition denoted by 
' __ 1' and '  + 2' is a necessary feature of our scheme. 

3. Why Four States 

The real part of the one-particle Schr/Sdinger equation has the form 

/ Oln ~ \  m~ 2 m~ 2 E o = R e [ i h y )  = ~ - ( v , >  - T(v2}  + 2 / , +  V (3.1) 

where 
me(vl - -  i v 2 )  = iliV In ~b (3.2) 
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and V is the external potential. One of the/~'s in equation (3.1) arises from 
the solute fluid and the other/z arises from the solvent fluid and they are 
equal to each other. The /z's are thermal energies associated with the 
'peculiar' velocities relative to the respective fluids mean velocity (Gilson, 
1969b). Thus, a fluid simulation for equation (3.1) must involve the average 
kinetic energy of the solute being positive going with a positive sign for/z, 
and the average kinetic energy of the solvent being negative also going with 
a positive sign for ~. It would seem to be impossible for the solvent to 
involve negative energy particles only and yet (when t ~ > 0) to make a 
positive contribution to the thermal energy as a result of their 'peculiar' 
motion distribution. However, if the solvent has positive energy constitu- 
ents as well as the dominantly negative energy particles in its structure, then 
its translational kinetic energy, --me(~2)2/2, can, as indicated, be negative; 
whilst its thermal energy,/*2 =/z2+ + t*2- can be positive as a result of, tz2+, 
the positive particle contribution to the solvent thermal energy, being 
numerically greater than, /z2_, the negative particle contribution to the 
solvent thermal energy. The reader is reminded that there has been a 
change of notation from what was used in earlier papers. In particular/~2 
here corresponds to -/~ (solvent) in (Gilson, 1969b, c). 

As we have mentioned elsewhere (Gilson, 1971a), the solute and solvent 
can interchange their roles where the temperature, T ( x ,  t ) ,  changes sign. 
Thus there is a general necessity for both solute and solvent to involve both 
signs of mass and so the four states can be seen to be essential. 

4. I n t e r n a l  a n d  E x t e r n a l  F u n c t i o n s  

Basic to the philosophy of this work is the idea that Schrrdinger quantum 
mechanics arises from the fact that in classical relativity there is a place for 
negative mass. This connection has only shown up as a result of attempting 
to derive the Schr~Sdinger equation from a statistical fluid basis (Gilson, 
1969c). This relativistic fluid route to quantum mechanics also suggests 
another feature of structure which will be useful to us. It suggests that there 
occur, in the positive negative mass mixture context, two types of function 
which we shall call 'internal' and 'external'. This can be seen by considering 
the two relativistic equations (4.1) and (4.2) for particles of rest mass, +me, 
in scalar potentials V~ and V2. 

If we define 

and 

El + E 2 -  (rq + V9 = E~,t-  Win, 

E l  - E2 - ( V I  - V2) = Er = 2rn,  c 2 

(4.1) 

O.~ 

~.3) 

O.4) 
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with 

and 

then 
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v, + v2 = w,. ,  (4.5) 

V~ - Vz = We~t (4.6) 

Eint p12 -Pz~Z + Wi.t (4.7) 
2me 

Expression (4.7) for E~,t can be seen to be comparable with the Schr~Sdinger 
equation (3.1). On the other hand, expression (4.4) for Eext gives twice the 
rest energy for the particle involved in Ei,t. Thus for a system which is 
closed in the sense that VI - V2 = Wext = 0 (that is the particles are only 
interacting with each other), the rest mass appears as an external energy 
function and the classical like kinetic energy appears as an internal energy 
function. The reader may prefer to see the argument the other way. That is 
with I11 + V2 = 0. However, he will still arrive at an equation like (4.7) and 
similar conclusions. The reason for this duality effect seems to be that the 
use of negative mass in systems widens the whole concept of  what is meant 
by an 'open' or a 'closed' system. This duality also led to this author making 
the wrong choice in defining the sign for mass averages involving the solvent 
in earlier work. The preceding argument is only meant to be suggestive and, 
indeed, if an equation such as (4.7) is to be linked with the SchrSdinger 
equation a more involved form is needed (Gilson, 1969c). However, we 
have given a motivation for recognising the two types, 'internal' and 
'external' functions. In particular, the 'classical energy' and the 'rest mass' 
appear on opposite sides of the fence, as it were. 

5. Equations o f  Motion and Constraint 

The equation of continuity for the solute mass density, p~, can be taken 
to be 

ap~ 
a--/- = - v .  (<v,> p,) (5.1) 

Here 
Pl = rneNl (5.2) 

Here we shall now add an important additional concept to this author's 
previous work. We shall assume that the solvent is a viscous fluid. This idea 
comes from the work of Nils HSrnqvist (1969) where it is used in the one 
fluid context. With HSrnqvist we shall regard this viscosity as a 'bulk' 
viscosity effect and in the present work no other viscosity will be brought 
into the structure. Thus we can take the stress tensor for the 'bulk' viscous 
solvent to be 

cr2i~ = -P2 ~i~ - vp2 3i~ V. (v2> (5.3) 

= ~2 ~ (5.4) 
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say, where v is the coefficient of kinematic bulk viscosity. On the other hand, 
for the non-viscous solute the stress tensor will be 

O-u~ = -Pl  3~ = O-1 8~ (5.5) 

say. For the viscous solvent we shall also make use of the first approximation 
transport equation 

(u  P2 = + 0 7 0 2  (5.6) 

Here, 
P2 = -me N2 

The coefficient of diffusion, D, will be taken to have the value 

(5.7) 

D = h/2me (5.8) 

which is the same numerical identification as was made by Nelson (1966, 
1967). The temperatures for the two fluids were defined by equations (2.23) 
and (2.24). 

The osmotic pressure of the solute plays an important role and will be 
denoted by P0. It is defined by 

Po =Pl  - P 2 = � 8 9  f I12 fftl(ll) dll (5.9) 

where P2 is the hydrostatic pressure due to the solvent. We are now in a 
position to state the equilibrium requirements for the fluid complex. Solute 
and solvent will be assumed to be locally in mutual thermal equilibrium and 
consequently they will have the same temperature at any space point and 
definite time. Thus 

T,(r, t) ---- T2(r, t) (5.10) 

The temperature will, as indicated, be assumed to vary with space and time. 
The second equilibrium requirement is that the solute stress forces exactly 
balance the stress forces due to the motion of the viscous solvent. This 
condition is expressed by 

O'IIK = '3~21~ (5.11) 

From (2.14), (2.15), (2.23), (5.2) and (5.9), we get 

Pl - -P2 _ k T  

Pl me 
(5.12) 

Thus the osmotic pressure for the solute satisfies the perfect gas equation of 
state. From (5.3), (5.4) and (5.5) we get 

O-1 = -Pl = a2 (5.13) 

or  
Pl - P2 = -(o-2 + P2) (5.14) 
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Hence from (5.3), (5.12) and (5.14) we deduce that 

Pl - P 2  (a2 +P2) F v p2 V. (v2) 
Pl Pl Pl 

= k T / m ,  (5.15) 

Our third and final equilibrium requirement will be to take the total local 
mass density pr to be zero at all points of configuration space. Thus 

p r  = Pi + P2 = m e ( N l  - N 2 )  =- 0 (5.16) 
or  

p2 /p l  = -1  (5.17) 

The three equilibrium conditions are probably not independent. It is 
likely that they are all deducible from a single principle. This point will be 
left for further study. We remark that, if Pr is identified as an external 
function, then the condition (5.16) means that the total external fluid mass 
density is zero everywhere and at all times. Expressed otherwise; the mass 
distribution associated with the fluid complex is not seen externally. On the 
other hand, 

Po = p l  - p2 = m e ( N l  + N 2 )  (5.18) 

will be the corresponding internal mass density function and it turns out 
that po /m~  is the usual quantum probability density. 

Equations (5.6), (5.15) and (5.17) give the correct form for the local 
temperature, T(r, t): 

k T  
- -  = - r v D V  2 In P2 (5.19) 
me 

Elsewhere, we have obtained (Gilson, 1971a, equations 2.6, 3.4, 6.5) an 
expression for the local temperature in the one-dimensional case. We need 
only replace 02/Ox 2 in this way by V 2 to get the three-dimensional form 

3 k T  h 2 
m e  4 m e  2 V2 In p (5.20) 

where p = ~b* ~b. Comparing (5.19) and (5.20), we see that, p 2 / m e  can be 
identified as some constant times p, 

P2 = - c o m e  (5.21) 

and because of (5.17) we then have 

Pl = +Cpme (5.22) 

Actually, we do not need to appeal to results obtained elsewhere to get 
(5.21) and (5.22). We can alternatively assume that p = ~b* ~b, as employed 
in conventional quantum mechanics is the total internal function, 
(p l  - p 2 ) / m , ,  in our scheme. Thus 

p m e  = Pl - P2 (5.23) 
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taken with (5.17) gives 

Pl = �89 and /0 2 = --~pme (5.24) 

That is with this assumption c has the explicit value 1/2. We can from (5.19) 
and (5.20) also identify 

h 2 
3 vD - 4meZ (5.25) 

Using the value (5.8) in (5.25) gives 

Thus from (5.8) and (5.26) we have 

h 
6me (5.26) 

(D/v) = 3 (5.27) 

This is a very interesting relationship, probably of deep significance. We 
also note that the values of the two thermal energies/~ and/z z are from 
(2.23) and (2.24) 

tz~ = ~ k T  and /z 2 = 3 k T  (5.28) 

the temperatures both being taken equal to T because of (5.10). Thus for the 
two specific heats at constant volume per particle, we have 

Cv., = Cv,2 = (3/2)k (5.29) 

From (5.28), it follows that 
/~1 =/~2 (5.30) 

This is equivalent to the result obtained in (Gilson, 1969b) and indicates an 
equi-partition of thermal energy between the solute and the solvent. 
Equation (5.30) shows why our present notation is superior to the earlier 
notation when we had/~ (solute) = -/z (solvent). This was less clear physically 
than is equation (5.30). 

6. Contributions to the Entropy 

The solute satisfies the perfect gas equation (5.12) relative to the solvent 
pressure. Thus we can associate an entropy per particle with the solute of 
the form 

s~ = cvln T - -  k ln p + a (6.1) 

= (3/2) k In T -  kln  p + a (6.2) 

by (5.29). If  the value of Tin terms ofp (5.20), is substituted into (6.2) we get 

s~ = (3/2) k In ]V 2 In p[ - k In p + b (6.3) 
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Let us compare our normalised distribution rn~(l~) which was given 
explicitly in (Gilson, 1971 a) for one dimension and which in three dimensions 
will have the form 

m,(ll) = el IZ1-3/2 exp [ (v, -- (vl))2~ ~--m0 2 k T ~ ,  ~ ] (6.4) 

where cl is a constant, with the type of distribution often used in statistical 
mechanics (Sommerfeld, 1967) 

f =  N -1 e -~ exp (-E(I) /kT)  (6.5) 

It follows that 
e -~ 

- ( 6 . 6 )  N ]TI 3/2 

where 2t is a constant. If  z0 is the partition function, we also have 

e ~' = z o N  -1 =_ )t-l lT[3/2N-1 (6.7) 

Hence 
z 0 = h - 1 Z  3/2 (6.8) 

and Boltzmann's form for the entropy per particle is thus 

Sl = klnzo + tz l /T (6.9) 

where/Zl is given by (5.26). Using (6.8) this reduces to 

s~ = (3/2)k In T + tz~/T + constant (6.10) 

The term in lnp in (6.2) does not occur in (6.10) because the distribution 
ml (11) has been normalised to a constant value over thermal velocity space 
and so does not contain direct information about, p, the configuration 
space density. The term tz~/Tin (6.10) was calculated in Gilson (1971a) and 
as usual for a perfect gas has the constant value (3k/2) per particle in three 
dimensions. This value is also clear from (5.28). This same term can be 
included in the constant in (6.2). Thus we shall take the entropy of the solute 
to be given by 

s~ = 3kln T -  k l n p  + tzl/T + AI (6.11) 

Similarly we can take the entropy of the solvent to be 

Sz = (3/2) k In T -  k In p + Iz2/T + A2 (6.12) 

The case for (6.12) is not as good as the case for (6.11) because the solvent 
is a rather more complex fluid than is the solute. One difficulty with the 
solvent entropy arose when evaluating the Iz2/T term because the solvent 
distribution involves for one thing a divergent exponential. However, this 
divergence is damped by negative mass contributions (positive on our 
present view) and this difficulty was overcome in Gilson (1971a). Anyway, 
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here we have the unambiguous result (5.30). Thus the internal local entropy 
of our fluid complex will be taken to be 

Sint = Sl .~_ S2 = 2 k l n ( T 3 / 2 / p )  + t*l + 2 + A1 + A2 (6.13) 
T 

and the external local entropy can be taken to be 

Sext = sl - s2 - 0 (6.14) 

if we agree to take A 1 - A 2 = 0 or, indeed, take both A1 and A2 zero. The 
external entropy is here zero in agreement with Nernst's theorem that the 
entropy of a pure quantum state can be taken to be zero at absolute zero 
temperature. The temperature T used in this paper can be regarded as an 
internal temperature with Text = T1 - T2 -- 0. 

7. F o k k e r - P l a n e k  Equat ion 

It is interesting to see how this work makes contact with the work of 
E. Nelson (1966, 1967). Because of the result (5.24), equations (5.1) and 
(5.6) can be combined by addition or subtraction to give the two Fokker-  
Planck equations 

0_pp = - - V .  [(V 1 -J- V2)p]  "Jr D V Z p  (7.1) 
Ot 

and 

0p _ - V  [<vl - v2> p] - D V  z p (7.2) 
0t 

on which Nelson bases his derivation of the Schr6dinger equation. How- 
ever, it should be stressed that the work in this paper has a physically and 
statistically very different structure from the structure on which Nelson 
bases his work. To this author it seems that two actually distinct fluids both 
involving positive and negative mass contributions are needed if classical 
fluid sense is to be seen as underlying the quantum process (Gilson, 1968a). 

8. Conclusions 

The perfection with which the group of ideas contained essentially in the 
papers (Gilson, 1969b, c, 1971 a; H~Srnqvist, 1969; Nelson, 1966, 1967) and 
in the present paper have here been shown to fit together within the context 
of this two fluid scheme would seem strongly to imply its general correctness. 
It is significant that the argument used to construct a mathematical model 
for a quantum simulating fluid complex given in this paper does not 
logically depend on using information derived from orthodox quantum 
theory, except in the minor respect of identifying the values of the viscosity 
coefficient v and the diffusion coefficient D. It is remarkable that even the 
correct form for the temperature which involves the strange V 2 In p function 
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arises na tura l ly  f rom the viscous fluid basis. The  ma in  conclusion to emerge 
f rom this work  can be summar ised  as follows. Q u a n t u m  processes can be 
descr ibed by  a fluid complex  fo rmed  f rom a po la r i sa t ion  o f  vi r tual  posi t ive 
and  negative vacuum mass  states by  an  internal  thermal  energisat ion.  
Mate r ia l  re la ted to the ideas conta ined  in this pape r  can also be found  in the 
works  o f  Bart le t t  (1949), Gi l son  (1968b, c, d, 1969e, d), Ke r shaw (1964), 
Lea f  (1968), L o n d o n  (1954), Made lung  (1926), Moya l  (1949), Suppes (1963), 
Vigier (1954) and  Wigner  (1932). 
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